Mechanisms of 4-hydroxynonenal-induced neuronal microtubule dysfunction.

نویسندگان

  • M Diana Neely
  • A Boutte
  • D Milatovic
  • Thomas J Montine
چکیده

We have previously demonstrated that neuronal microtubules are exquisitely sensitive to the lipid peroxidation product 4-hydroxynonenal (HNE). The mechanism, however, by which HNE disrupts the microtubules, is not known. Sulfhydryl groups of protein-cysteines constitute main targets of HNE. Indeed, HNE is mainly detoxified by conjugation to glutathione (GSH), a reaction that leads to depletion of cellular GSH. GSH maintains protein sulfhydryl groups in the reduced form and has been implicated in the regulation of cytoskeletal function. Here, we assess what role depletion of cellular GSH plays in the HNE-induced microtubule disruption. We demonstrate that HNE and its intracellularly activated tri-ester analog, HNE(Ac)(3), cause substantial GSH depletion in Neuro2A cells. However, other compounds inducing GSH depletion had no effect on the microtubule network. Therefore, HNE-induced depletion of cellular GSH does not contribute to the HNE-induced microtubule disruption. We previously demonstrated that another main cellular target of HNE is tubulin, the core protein of microtubules containing abundant cysteines. The functional relevance of this adduction, however, had not been evaluated. Here, we demonstrate that exposure of Neuro 2A cells to HNE or HNE(Ac)(3) results in the inhibition of cytosolic taxol-induced tubulin polymerization. These and our previous observations strongly support the hypothesis that HNE-adduction to tubulin is the primary mechanism involved in the HNE-induced loss of the highly dynamic neuronal microtubule network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 97: Neurodegeneration Induced by Tau protein

Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...

متن کامل

External human exposure and management immune system in pathogenesis of irritable bowel syndrome

External exposed radiation may play an important role in pathogens of irritable bowel syndrome (IBS), although is thought to arise due to a combination of genetic and environmental factors. The result is dysregulated immune responses due to alteration in the gut microbiota population and the subsequent development of gut inflammation. It has recently been shown that the effect of ioni...

متن کامل

Effects of ebselen on glutathione level in neurons exposed to arachidonic acid and 4-hydroxynonenal during simulated ischemia in vitro.

Release of arachidonic acid (AA) is a neurotoxic mechanism of oxidative nature in trauma and ischemia. We studied ebselen effects on AA and 4-hydroxynonenal toxicity in rat cortical neurons in simulated ischemia in vitro by assessing cell viability and glutathione concentration. Ebselen normalized neuronal viability diminished by AA and 4-hydroxynonenal and increased glutathione level in normox...

متن کامل

Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis.

Oxidative stress is believed to play important roles in neuronal cell death associated with many different neurodegenerative conditions (e.g., Alzheimer's disease, Parkinson's disease, and cerebral ischemia), and it is believed also that apoptosis is an important mode of cell death in these disorders. Membrane lipid peroxidation has been documented in the brain regions affected in these disorde...

متن کامل

Mitochondrial Mislocalization Underlies Aβ42-Induced Neuronal Dysfunction in a Drosophila Model of Alzheimer's Disease

The amyloid-beta 42 (Abeta42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD path...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 1037 1-2  شماره 

صفحات  -

تاریخ انتشار 2005